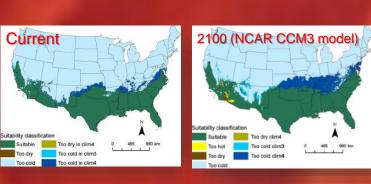
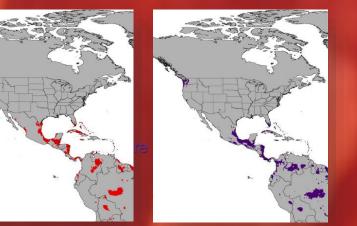
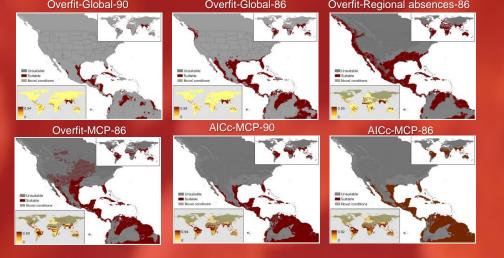
Developing rapid response tools, control measures, and refining invasibility models for invasive pythons in the Florida everglades James C. Nifong¹, Nathan Johnson², and Margaret Hunter²

¹Wetlands and Coastal Ecology Branch, Environmental Lab, US Army Engineer Research and Development Center, Vicksburg, MS, USA ²U.S. Geological Survey, Gainesville, FL, USA


Abstract

Recently detected hybridization between two ecologically distinct python species within the invasive Florida Everglades python population has the potential to affect more natural areas and infrastructure (i.e., water control structures, etc.) throughout the US than is currently anticipated. Moreover, current early detection and rapid response methods (specifically eDNA) do not account for the potential effect hybridization may have on positive detection of hybrid individuals. Expanded genetic analyses of pythons to include specimens from their native ranges and potential source populations (i.e., pet trade and zoos) in comparison to established invasive populations will allow biologists and managers to 1) make better management decisions to mitigate the spread of these aggressively invasive snakes throughout the southern tier of the United States, 2) increase early detection and rapid response capabilities, 3) refine habitat suitability modelling efforts, and 4) determine whether pythons in new areas are the product of subsequent releases or range expansion of established populations. Here, we present a conceptual framework being developed to advance our control and response capabilities to better manage and eradicate invasive pythons as well as halt their expansion to new areas.


Modeling Invasibility and Dispersal

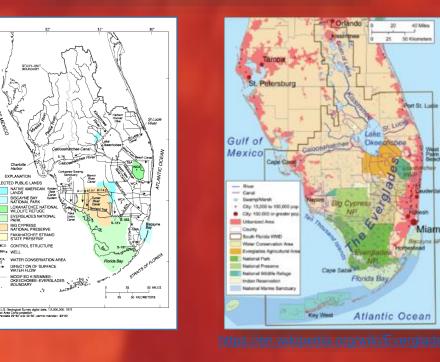

Scope & Objectives:

Refine predictions of Ecological Niche Modeling efforts by incorporating potential for niche expansion due to hybrid vigor and updated environmental data from invasive and native ranges.

Further, we showcase potential avenues for collaboration between researchers as well as managers working in the Everglades and scientists at the US Army Engineer Research and Development Center (ERDC).


Early Detection & Rapid Response

Scope & Objectives:


- Develop eDNA techniques to accurately detect hybrid (P. molurus X P. bivittatus), individuals.
- Build sequence library of genetic material from native range of *P. molurus* and *P. bivittatus* as well as commercial populations (i.e., zoo and pet trade).

Develop range expansion (dispersal) model, integrating existing • knowledge of python movements and behavior within the invasive range as well as potential barriers and corridors to movements.

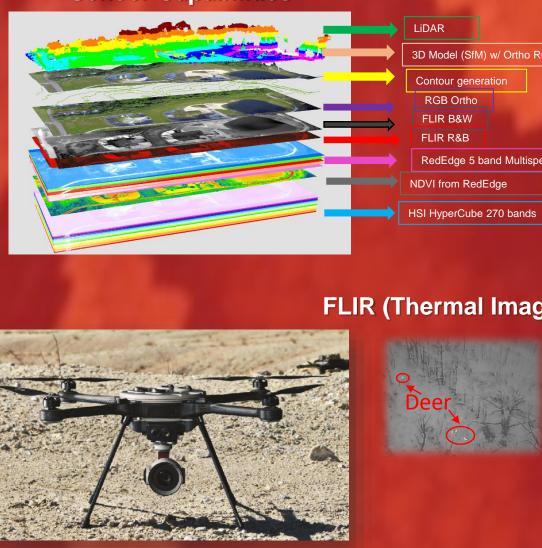
Pyron et al. (2008) PLoS One

Capabilities Developed:

-Increased preparedness and readiness.

-Focus resource allocation for control, containment, and eradication to most vulnerable localities.

-Identify opportunities to intercept and slow python movements across the landscape.


Develop detection methods using novel UAV technologies.

Capabilities Developed:

- Enable detection of all three variants (*P. molurus*, *P. bivittatus*, and hybrids) from waterborne samples.
- Allow managers to identify whether new sightings within the invasive range represent novel releases or range expansions of existing invasive population.
- Facilitate assignment of newly sighted individuals to source populations (invasive, commercial, or new introduction).
- Enable and promote rapid detection over large spatial extents.

Sensor Capabilities

Why Collaborate with ERDC?

ERDC Mission

The U.S. Army Corps of Engineers' (USACE) Engineer Research and Development Center (ERDC) helps solve our Nation's most challenging problems in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, Department of Defense, civilian agencies, and our Nation's public good.

ERDC Environmental Lab

Our researchers in the Environmental Laboratory conduct research in ecosystem science and technology, environmental resiliency, environmental sensing, ecological modeling and forecasting, risk and decision science, environmentally sustainable material, systems biology, climate change, and environmental security. We partner with other government agencies, academia, and industry to solve complex environmental systems problems. We provide solutions to environmental systems challenges worldwide, including:

- **Analytical chemistry**
- Aquatic and wetland

mapping

Invasive and

- ecosystems Chemistry, cleanup, and
- remediation Dredging and dredged material
- management Fate and effects DM

Geospatial analysis and

Hazardous/toxic waste

assessment and cleanup

Collaboration Opportunities

Reimbursable basis Risk assessment, sensing, and Cooperative Research and Development Agreement (CRADA)

UAS Platforms	<u>G4</u>					<u>R80D</u>
LIFT CAPACITY	< 8 lb	< 33lb	<2lb	<24 lbs	<1lb	<4.4lb
SENSORS	RGB, FLIR, MicaSense, LiDAR/Hypers pec	LiDAR/Hyperspec	RGB, FLIR, MicaSense	LiDAR/RGB	Camera	HDZOOM 30x EO/IR
FLIGHT TIME	12-20 MINS	20-40 MINS	1 HR	1 HR	25 MINS	50 MINS
# OF SYSTEMS	1	1	1	1	10	4
ТҮРЕ	MULTIROTOR (X8)	MULTIROTOR (X4- DUAL TRI BLADES)	HYBRID VTOL	HELICOPTER	MULTIROT OR (X4) or (x8)	MULTIROTOR
APPLICATI ON	Surveying/Ma pping	Surveying/Mapping / Agricultural/ Routes	Surveying/Mappin g/ Agricultural/ Disaster Response	Surveying/Mapp ing	Disaster Response/ Research	ISR/Mapping/ Surveying

FLIR (Thermal Imagery)

FLIR SkyRaider R80D - Multi-mission SUAS

Contact: Jennifer Laird (ERDC-EL UAS Team Lead, Jennifer.G.Laird@usace.army.mil)

penents analysis • Unexploded ordnance detection and ordnance management Wetlands technology

Molecular ecology

restoration

monitoring

Modeling and ecosystem

Stewardship/recreation and

threatened/endangered species

• Memorandum of Agreement (MOA) Educational Partnership Agreement (EPA) Intergovernmental Cooperative Agreement (ICA) Interagency Agreement (IAA)

Contact: James C. Nifong, Ph. D. (Email: <u>James C. Nifong@usace.army.mil</u>)